Skip to content

QuantumState

Bases: NumpyModel

Represents a quantum state.

Source code in src/qiskit_mps_initializer/datatypes/quantum_state.py
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
class QuantumState(pdnm.NumpyModel):
    """Represents a quantum state."""

    original_data: pdnt.Np1DArrayComplex128
    """The original data of the quantum state."""

    @classmethod
    def from_dense_data(
        cls, data: npt.ArrayLike, normalize: bool = False
    ) -> "QuantumState":
        """Initializes the QuantumState from the given dense data."""

        normalization_factor = np.linalg.norm(data)

        if not normalize and not np.isclose(normalization_factor, 1.0):
            raise ValueError(
                "The provided data is not normalized. Set `normalize=True` to normalize the wavefunction."
            )

        return cls(original_data=np.array(data, dtype=np.complex128))

    @pd.computed_field
    @property
    def _original_normalization_factor(self) -> float:
        return np.linalg.norm(self.original_data).astype(float)

    @pd.computed_field
    @property
    def wavefunction(self) -> pdnt.Np1DArrayComplex128:
        """The normalized wavefunction of the quantum state."""
        return self.original_data / self._original_normalization_factor

    @pd.computed_field
    @property
    def size(self) -> int:
        """The dimension of the quantum state."""
        return self.wavefunction.size

    @pd.computed_field
    @property
    def num_qubits(self) -> int:
        """The number of qubits required to represent the quantum state."""
        return np.log2(self.size).astype(int)

    def generate_mps_initializer_circuit(
        self, number_of_layers: int
    ) -> qiskit.circuit.QuantumCircuit:
        """Generates the MPS initializer circuit for the quantum state.

        Returns:
            QuantumCircuit: The MPS initializer circuit for the quantum state as a qiskit circuit.
        """
        circuit, _ = multi_layered_circuit_for_non_approximated(
            self.wavefunction, max_number_of_layers=number_of_layers
        )
        return circuit

original_data instance-attribute

original_data: Np1DArrayComplex128

The original data of the quantum state.

wavefunction property

wavefunction: Np1DArrayComplex128

The normalized wavefunction of the quantum state.

size property

size: int

The dimension of the quantum state.

num_qubits property

num_qubits: int

The number of qubits required to represent the quantum state.

from_dense_data classmethod

from_dense_data(
    data: ArrayLike, normalize: bool = False
) -> QuantumState

Initializes the QuantumState from the given dense data.

Source code in src/qiskit_mps_initializer/datatypes/quantum_state.py
22
23
24
25
26
27
28
29
30
31
32
33
34
35
@classmethod
def from_dense_data(
    cls, data: npt.ArrayLike, normalize: bool = False
) -> "QuantumState":
    """Initializes the QuantumState from the given dense data."""

    normalization_factor = np.linalg.norm(data)

    if not normalize and not np.isclose(normalization_factor, 1.0):
        raise ValueError(
            "The provided data is not normalized. Set `normalize=True` to normalize the wavefunction."
        )

    return cls(original_data=np.array(data, dtype=np.complex128))

generate_mps_initializer_circuit

generate_mps_initializer_circuit(
    number_of_layers: int,
) -> QuantumCircuit

Generates the MPS initializer circuit for the quantum state.

Returns:

  • QuantumCircuit ( QuantumCircuit ) –

    The MPS initializer circuit for the quantum state as a qiskit circuit.

Source code in src/qiskit_mps_initializer/datatypes/quantum_state.py
60
61
62
63
64
65
66
67
68
69
70
71
def generate_mps_initializer_circuit(
    self, number_of_layers: int
) -> qiskit.circuit.QuantumCircuit:
    """Generates the MPS initializer circuit for the quantum state.

    Returns:
        QuantumCircuit: The MPS initializer circuit for the quantum state as a qiskit circuit.
    """
    circuit, _ = multi_layered_circuit_for_non_approximated(
        self.wavefunction, max_number_of_layers=number_of_layers
    )
    return circuit